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A Millimeter-Wave Six-Port Reflectometer Based on
the Sampled-Transmission Line Architecture

Sadik Ulker Student Member, IEEEBNd Robert M. Weikle, |IMember, IEEE

Abstract—This letter presents a proof-of-concept implementa- I" octave
tion of a millimeter-wave reflectometer for measuring complex re- — — —
flection coefficients. The reflectometer is based on the six-port ar- 2%octave

chitecture and consists of a single section of WR-10 rectangular

waveguide and a set of three Schottky power detectors. Design con-  Sjgnal Source
siderations as well as measurements in the 75 to 110 GHz range are q
described and discussed. Because of its simple architecture, the re- Y l
flectometer is amenable to scaling for measurements well into the (m;

submillimeter-wave region of the spectrum.
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—

Index Terms—Network analyzers, Schottky detectors, six-port J:
reflectometers. Power Detec
|. INTRODUCTION A/D Converter board

CATTERING parameter measurements based on vector
etwork analysis play a critical role in the design and devel-
opment of modern microwave components. In fact, scattering
parameter measurement techniques are frequently used to study

. . . .Fig."1. Basic structure of the sampled-transmission line six-port reflectometer
and analyze the properties of dielectrics and other maten@[)g P P

'sed on [7]). A set of power detectors samples the voltage standing wave along
[1] as well as quasioptical components such as mesh filtersection of transmission line.
[2]. Unfortunately, the size, cost, and complexity of modern
network analyzers often preclude their use in nonlaboratory
environments. In addition, commercial network analyzers are
typically limited in operation to W-band (75-110 GHz), with ) o ) )
extensions to higher frequencies being both expensive and N sampled-line analyzer (shown in Fig. 1) is a relatively
cumbersome [3]. simple version of th_e six-port _reflectometer introduced _by
Over the past several years, a number of investigators h&/&d€n [8], [9]. The six-port architecture removes the require-
explored alternatives to the traditional four-port network an&1€nt for a vector voltmeter and the magnitude and phase of
lyzer based on the vector voltmeter [2], [4]-[6]. Much of thi@n unknown reflection coefficient are determined from an
work has been motivated by the need to characterize new §8S€mble of four power measurements. In the sampled-line
vices and components that are capable of operating far beydflémentation of the six-port reflectometer, the power de-
W-band as well as to measure the properties of materials in {fE{0rS are diodes that sample the voltage standing wave at

submillimeter-wave range. Because of the relative difficulty ifl!SCéte points along a section of transmission line. As a result,

implementing complex or intricate circuit designs at millimete’® S@mpled-line reflectometer is reminiscent of the standard
d line used to measure standing waves in waveguide.

and submillimeter wavelengths, simple architectures tend to ﬂ@tte
preferred and generally yield superior performance at frequendt has been shown th_at only _three power detector_s are re-
cies exceeding 100 GHz. quired for the sampled-line architecture if the load being mea-

In this paper, we present a proof-of-concept Six_port reﬂeé.ured is knOWn to be paSSive- [7], [8] Eﬁectively, this redU-Ce.S the
tometer for millimeter-wave measurements that is based dAmpled-line analyzer to a five-port reflectometer. To eliminate
the sampled transmission-line architecture first proposed a#ising, the standing-wave voltages along the transmission line
demonstrated by Williams [7]. Because of its simple structur8/® Sampled at intervals not exceeding a half-wavelength. Con-
the sampled-line reflectometer has outstanding potential ffduently, a triplet of diode detectors spacechjp§ will allow
being scaled to the submillimeter-wave region of the spectrufi€ reflection coefficient to be measured over an octave of band-

width (see Fig. 1).
. . _ A diagram of the millimeter-wave reflectometer investigated
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ported by the U.S. Army Research Office under Grants DAAG55—98—1—04é% this work IS shown in Fig. 2(a). The CI!’CUI.t con5|§ts of a S)
and DAAD19-00-1-0404. The review of this letter was arranged by Associa@n long section of WR-10 waveguide (with inner dimensions
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Fig.3. Plotofthe detected power ratiBs/ P, vs. P; / P, for the sampled-line
reflectometer at various sliding backshort positions. Data is shown for both 75
GHz and 105 GHz. A least-squares fit to the ellipses provides the calibration
constants for the six-port to four-port conversion.
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Fig. 4. Measurement setup for the W-band sampled-line reflectometer. The
output of an HP8510C millimeter-wave network analyzer is used for the swept
= source.

the six-port network is converted to an equivalent four-port re-
flectometer. The details of this procedure are well-documented
Fig. 2. (a) Diagram of the W-band sampled-line reflectometer. Shallow si@é’]d will _nOt _be repeat_ed_herg [8l, [10] The six-port to four-port
channels parallel to the waveguide accommodate wirebond connections focgversion involves finding five calibration constants that are a
r‘eturn-to-_grqund; (b) close-up view of the quartz microstrip probe and !OW-Dapmperty of the network architecture [8]. This calibration step
filter section; (c) diagram of the UVA SC2T1 planar Schottky diode chip. is most easily accomplished using a sliding termination. With
. L P53, P;, and P; denoting the measured outputs of the three
gshhalllfwdt_:r(()jss (;hgn_nelsgs ShﬁWB'r_‘ F|g._2. vac‘ S_C?Tl Elan wer detectors (see Fig. 2), Engen has shown that the sliding
chott y diodes 1a ricated at the nlver5|ty Or virginia, snow. rmination traces out an eIIipse in t@/PLL—Pg/PLL plane

in Fig.. 2(c), are _ﬂip-_chip mountgd across .250] wide 9aps in 0]. A least-squares fit to the data allows the five calibration
the microstrip circuits. These diodes, which are typically used \<t2nts to be determined

for mixer applications at submillimeter wavelengths, are used asy plot of the calibration ellipses at 75 and 105 GHz for

gquare-law det_ectors that sample th? magnitude of the_ elec{Hg W-band sampled-line reflectometer is shown in Fig. 3.
field at three points alo_ng the wgvegwd.r_g/4-long bond wires For measurements throughout the 75-110 GHz range, sliding
shorted to the waveguide housing provide dc return and the %brt measurements were taken using a noncontacting WR-10

tector outputs are measured with a set of Keithley-2000 6 1igi, e packshort (Millitech TSC-10-R000) and the calibration

digit mult|'meters.. Flvg-sgctlon stepped-l_mpedance MICrOSURstants were determined for each frequency point of interest
low-pass filters (with high impedance sections of £4&nd low

. d i £ 48 block the millimet ianal by least-squares fitting to the measured data.
Impedance sections o ) ock the mifimeter-wave sighal. "1 second step of the calibration procedure consists of the
from propagating to the detection circuitry.

familiar technique of using three well-characterized standard

loads to determine the error coefficients in the four-port reflec-

lll. CALIBRATION PROCEDURE tometer model. In this work, WR-10 calibration standards (a

As with all six-port reflectometers, calibration of the sammatched termination, a short, and an offset short) from the HP
pled-line reflectometer consists of two steps. In the initial steyy11644A calibration kit were used for this step.
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0 ] the detector diodes were forward biased to 0.08 mA. Fig. 5
-2*@1—(},——‘1000 ¢ shows that the return loss measured using the sampled-line
r5-9—"00] & 8 (\ - .
-4 o 7 7 /f* reflectometer compares relatively well to _that obtained from an
-6 /] L HP 8510C network analyzer over the entire WR-10 waveguide
g 8 L g° \‘17&' band, with the largest discrepancy occurring in the 81-84
= 10 o .
£ ) \/ GHz range. Over this frequency band, the measured output
oo |$ of the detectors was near the noise floor of our measurement
" \l system, resulting in larger errors in the calculated reflection
e b coefficient. This behavior suggests poor RF coupling between
" the waveguide and diodes in the 81-84 GHz band and is likely
P . » % s w10 due, in part, to misalignments associated with manual assembly
Frequency (GH) of the reflectometer.
(@
200 I % V. SUMMARY
Q (=]
B \ \ i ? \& 62 }( This letter has described a proof-of-concept demonstration of
100 ! b‘ - 1o a millimeter-wave reflectometer based on the six-port network
T \ ) &1 3% $\° \ \ architecture. The reflectometer design and performance over the
g . \ \ \ % \D\? \, E ( 75 to 110 GHz range have been presented and discussed. Be-
é H‘L \\ % 3 1 \ ?‘ ‘1 \ cause it consists of only a single section of waveguide and a set
z 50 \ —f\ R ‘1*‘+ l \ \ \ of Schottky power detectors, the reflectometer is amenable to
100 [ \. . e scaling to much higher frequencies. Future work will focus on
Y i 4 extending this technique to the submillimeter range where diag-
- ! T nostic and test instrumentation is both expensive and scarce.

80 95
Frequency (GHz)

(b)

Fig.5. (a) Magnitude (in dB) of,, for a waveguidez-plane,H -plane tuner;
(b) phase 0§, , for the E-plane,H -plane tuner. Both plots show data measure
using the sampled-line reflectometer) @nd the HP 8510C millimeter-wave
network analyzer (—) for comparison.
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